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Optimal constant acceleration motion primitives
Gregor Klančar and Sašo Blažič

Abstract—This article proposes new motion primitives that are
time-optimal and feasible for a vehicle (wheeled-mobile robot).
They are parameterized by a constant acceleration and a constant
deceleration in an obstacle-free environment between an initial
and a final configuration with given poses and velocities. The
derived compact parametric solution has implicit optimal velocity
profile, is continuous in C2, considers driving constraints and is
computationally efficient. The path is derived analytically con-
sidering constraints on maximal allowable driving velocity and
accelerations. The obtained motion primitives have continuous
transition of curvature and are thus easily drivable by the vehicle.

The proposed motion primitives are evaluated on several path-
planning examples and obtained solutions are compared to a
numerically expensive planner using Bernstein-Bézier (BB) curve
with path shape and velocity profile optimization. Numerous
experiments have been conducted not only in the simulation
environment but also during testing and comparisons on the
actual mobile robot platforms. It is shown that the proposed
solution is computationally efficient, time optimal under given
constraints and trapezoidal velocity profile assumptions and is
close to globally optimal solution with an arbitrary velocity
profile.

Index Terms—Path planning, motion primitives, minimal time,
driving constraints.

I. INTRODUCTION

Path planning is a fundamental task of any autonomous
mobile vehicle and has been extensively studied in the litera-
ture. The majority of existing path planners provide solutions
described by a set of way-points [1], [2]. Such a path is
often not feasible and may result in control tracking errors
and uncomfortable driving due to sudden acceleration changes
involved [3]. Although such simple solutions might be suffi-
cient for several applications, this is not desired in perfor-
mance demanding applications where comfortable driving (e.g.
wheelchairs or self-driving cars), minimal-time driving or low
actuator wear for robust long-time performance is preferred
[4], [5]. To obtain semi feasible paths (e.g. with smooth veloc-
ities or curvature) in obstructed environments usually a fixed
set of motion primitives is used to build a state lattice graph
where path is searched [2], [6], [7]. Obtained paths minimize
defined criteria, e.g., minimal distance, maximal clearance,
energy or similar in the applied space discretization. However,
finding globally minimal-time solutions or at lest sufficient
approximations with a numeric search is computationally too
expensive.

Shortest path planning in obstacle free environment has
achieved wide attention. The first works on shortest paths for
curvature-constrained vehicles are done by [8], [9] and [1].
An optimal control law that steers the robot on a shortest
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distance to the goal is provided in [10]. Shortest paths study
for wheeled robots with field-of-view constraints has been
reported in [11]. Recently, also minimal energy path planing
has drawn considerable attention to maximize mobile robot
performance considering its limited on-board power [12], [13].

However, similar application of feasible minimal-time path
planning to wheeled mobile robots are rare. More common
are non-smooth (with discontinuity in curvature or orientation)
planning approaches resulting in minimal distance or minimal
time paths; or smooth planners which are not optimal in the
sense of distance or time. Besides circular arcs and straight
motion also several smooth motion primitives applicable in
path planning or path smoothing were suggested, such as
Bezier curves [2], [14], clothoids [15], higher order polyno-
mials [16] and eta-spline motion primitives with continuous
accelerations [4], [17]. Some approaches apply path-velocity
decomposition to compute admissible velocity profile that
minimize time on a predefined path [18]–[21].

Time-optimal trajectory planning considering bounded ve-
locities of the differential drive’s wheels which can be dis-
continuous is proposed in [22]. Minimal-time trajectory for a
robot with bounded acceleration where at least five switched
sequences are applied in bang- bang control is proposed in
[23]. A geometric reasoning is applied by [24] to obtain
time-optimal trajectories for bidirectional steered robot. Such
minimal-time path planners usually assume unobstructed en-
vironments and find a trajectory between the given initial and
the final configuration. As shown in [25] maximal-acceleration
bang-bang trajectories obtained numerically following Pon-
tryagin’s maximum principle are time-optimal candidates. But
due to increased complexity of multiple DOF, minimal-time
solutions quickly become too complex to be solved analyti-
cally.

This article addresses optimal time trajectory planning for
a wheeled vehicle in a free space with given initial and final
poses and velocities and considering constraints on velocity
and acceleration. In the similar existing works [22]–[25] the
necessary conditions for existence of the globally time-optimal
trajectories are given which combine several controls that are
either wheel’s maximal velocities [22], or wheel’s maximal
accelerations [23], [25], or turning radii [24]. The obtained
trajectories do not have continuous curvature and describes
the trajectory as a sequence of discontinuous controls. Our
approach assumes single switch from constant-accelerated to
constant-decelerated (CACD) motion restricted by a slip-free-
driving requirement and derives the time-optimal solution
considering those assumptions. The obtained optimal trajec-
tory is a parametric function of the two accelerations and
it has continuous curvature. The main idea is illustrated by
the proposed basic solution that considers trapezoidal velocity
profile with a constant-acceleration section, a constant-velocity
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section and a constant-deceleration section. Extensions of this
basic approach are proposed to obtain solutions where not only
the velocity and acceleration are bounded but also continuous
curvature of the trajectories is guaranteed.

The obtained minimal time trajectory is a parametric func-
tion of time where optimal velocity profile is implicitly defined
by the solution. The solution is therefore obtained in one
step. No additional velocity optimization is required in the
second step as in [18] or [19]. To find the optimal solution
only two equations need to be solved for two unknown
parameters (constant acceleration and constant deceleration).
The solution is found numerically in a bounded space of these
two parameters. This lowers the complexity compared to a
strictly numeric solution where optimal solution is found by
optimization of three or more variables (e.g. maximal velocity)
and applying numeric simulations of the vehicle kinematic
model to compute robot trajectories in each iteration of the
optimization. Thus the obtained solution is computationally
efficient and compact. It assumes trapezoidal velocity profile
with constant accelerations and bounded maximal velocity and
acceleration constraints. It is shown that these assumptions
applied in the proposed CACD path planner produces results
which are very close to the globally optimal solutions, i.e. the
solutions where the path is completely arbitrary. To evaluate
and compare results the fifth order Bernstein-Bézier (BB)
curve planner is applied with four free parameters defined
by optimization of path and velocity profile to minimize the
travelling time.

The proposed CACD motion primitives can have several
applications. It can be used to smooth robot paths which are
defined by a set of straight line segments with discontinuous
orientation. Such a path is usually the output of many path
planners in environment with known obstacles. Similarly is
done in [26], [15] where apply clothoids to obtain necessary
conditions for the locally time-optimal smoothing primitives.
It can be used to plan trajectories in unobstructed environments
from initial to desired final configuration in a smooth and time-
optimal fashion. It can also be applied to smooth path planners
in obstructed environments to compute cost-to-goal heuristics
such as in [5] or to use CACD primitives with continuous
transitions of curvature to build a lattice graph for optimal path
searching algorithms as in [5]–[7] or in kinodynamic RRT∗

planners [3], [27], [28].

II. DRIVING CONSTRAINTS

When searching for the minimal time the main goal of
trajectory planing is to compute a path with a velocity profile
that is easily drivable by mobile robots and achieves the target
pose within a reasonable time. When optimizing driving time
a vehicle needs to maximize its velocity v. The maximal
velocity vMAX that the vehicle can achieve is always limited
in practice. The acceleration (the rate of change of velocity)
is also limited not only because of robot capabilities but also
to prevent lateral and longitudinal slip. Maximal tangential
acceleration imposed by the drive is usually higher than the
one required by the slip-free driving. We will therefore con-
centrate on the acceleration constraints imposed by slipping
in the sequel.

Tangential acceleration at = dv
dt in a straight motion is

constrained by maximal tangential acceleration aMAXt where
the torque on the wheels produces the force in the ground
contact that is lower or equal to the friction force. When
driving on a curved path (with the curvature κ) with a constant
tangential velocity v and an angular velocity ω, the radial
acceleration ar = vω = v2κ is constrained by maximal radial
acceleration aMAXr to have the centrifugal force lower than the
wheel lateral friction force. Combining tangential and radial
accelerations, slipping is avoided if the radial acceleration and
the tangential acceleration are kept inside the ellipse defined
by aMAXt and aMAXr:

a2
t

a2
MAXt

+
a2
r

a2
MAXr

≤ 1 (1)

Optimality in the sense of driving time therefore requires
driving on the boundary of ellipse defined by (1) [18], [19].
When vMAX is achieved, acceleration might not be on the
boundary of the ellipse (1) but rather inside of the ellipse.

III. OPTIMAL CONSTANT ACCELERATION CURVES

The idea is to follow similar strategy as the one resulted
from by Pontryagin’s principle applied on a double integrator.
The vehicle applies maximum acceleration for some time and
maximum deceleration for some time to reach the desired lo-
cation. It has been shown in [25] that the trajectories obtained
on differential drive using maximal accelerations are time-
optimal candidates. Optimality was evaluated using a numeric
procedure where robot path was simulated using numeric
integration of robot kinematics and numeric examination of
identified sets of time-optimal trajectories.

In the proposed approach we derive parametric equations for
the optimal-time trajectory analytically and then solve them
to compute the required maximal accelerations as follows.
Maximal constant acceleration is defined by a point (at1, ar1)
on the ellipse (1) with at1 > 0 and maximal deceleration
by another point (at2, ar2) with at2 < 0. Without loss of
generality1 let us assume the vehicle is initially located in
the origin with its orientation pointing in the direction of
x axis (xsp = ysp = 0, θsp = 0), and has velocity vsp,
while the desired end pose and velocity are xep, yep, θep,
and vep, respectively. The main goal is to find such constant
acceleration pair (at1, ar1) and constant deceleration pair
(at2, ar2) to reach the desired end pose within a minimal time
which implies that both pairs need to fulfill relation (1).

A. Curve definition

The trajectory obtained during acceleration is defined by
tangential velocity v1(t) = vsp+at1t, angular velocity ω1(t) =
ar1
v1(t) = ar1

vsp+at1t
and vehicle’s differential drive kinematics

ẋ(t) = v(t) cos(θ(t))
ẏ(t) = v(t) sin(θ(t))

θ̇(t) = ω(t)
(2)

1Such initial condition is easily achieved by a simple affine coordinate
transformation.
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Note that the approach presented in this paper does not only
apply to differentially driven mobile robots but also to a
much more general class of wheeled mobile robots whose
input commands can be expressed as u1 = f(v, ω) and
u2 = g(v, ω) where f(·) and g(·) are smooth functions
of v and ω. For example, in the case of a car-like robot
with the front wheel steering angle and velocity commands:
u2 = α = arctan ωd

v and u1 = vs = v
cosα where d is the

distance between the front and the rear wheels axes while
the steering angle is limited due to practical implementation
(|α| < αMAX ). Consequently, the maximal curvature of the
path is also limited (κMAX = tanαMAX

d ) and the obtained
acceleration solutions need to fulfill the curvature constraint in
the start pose ar1

v2
sp
≤ κMAX and in the end pose ar2

v2
ep
≤ κMAX .

Considering (2) trajectory during acceleration reads

θ1(t) =

∫ t

0

ω1(τ)dτ =
ar1
at1

ln
v1(t)

vsp
(3)

x1(t) =

∫ t

0

v1(τ) cos θ1(τ)dτ

=
v2

1(t) (2at1 cos θ1(t) + ar1 sin θ1(t))− 2at1v
2
sp

4a2
t1 + a2

r1

(4)

y1(t) =

∫ t

0

v1(τ) sin θ1(τ)dτ

=
v2

1(t) (2at1 sin θ1(t)− ar1 cos θ1(t)) + 2ar1v
2
sp

4a2
t1 + a2

r1

(5)

where t ∈ [0, t1], t1 =
v̂−vsp
at1

, and v̂ = v1(t1) is maximal
velocity reached at the end of acceleration (t = t1) .

During deceleration (at2 < 0, ar2) the vehicle moves from
the obtained final pose of the acceleration (x1(t1), y1(t1),
θ1(t1)) towards the end pose (xep, yep, θep). To simplify
the derivation of the deceleration part, the obtained trajectory
of deceleration (in the sequel denoted as the second part)
will be obtained based on the results of accelerated motion
from the origin, Eqs. (3), (4), and (5). First, accelerated
motion is assumed from the origin with initial velocity vep,
and accelerations a∗t2 = −at2, a∗r2 = −ar2. The following
trajectory is obtained:

θ∗2(t∗) =
a∗r2
a∗t2

ln
v∗2(t∗)

vep
(6)

x∗2(t∗) =
v∗2

2(t∗) (2a∗t2 cos θ∗2(t∗) + a∗r2 sin θ∗2(t∗))− 2a∗t2v
2
ep

4a∗t2
2 + a∗r2

2

(7)

y∗2(t∗) =
v∗2

2(t∗) (2a∗t2 sin θ∗2(t∗)− a∗r2 cos θ∗2(t∗)) + 2a∗r2v
2
ep

4a∗t2
2 + a∗r2

2

(8)
where t∗ ∈ [0, t∗2] and t∗2 =

v̂−vep
a∗t2

to achieve desired velocity
v̂ at t∗ = t∗2.

In the second step the trajectory (6)-(8) is rotated for angle
θep − π and translated for (xep, yep):

θ2(t∗) = θ∗2(t∗) + θep − π
x2(t∗) = xep − x∗2(t∗) cos θep + y∗2(t∗) sin θep
y2(t∗) = yep − x∗2(t∗) sin θep − y∗2(t∗) cos θep

(9)

The resulting trajectory (9) starts from the end pose in the
direction of θep − π. In the third step, the sense of time is
reversed which makes the motion reversed and decelerating
(the orientation of the robot therefore changes for ±π). This
transformation guarantees that the correct final pose and final
velocity are achieved.

If proper tangential accelerations at1 and at2 and maximal
velocity v̂ are chosen, then the ends of the first and the second
curve join (x2(t∗2) = x1(t1), y2(t∗2) = y1(t1), and θ2(t∗2)±π =
θ1(t1)). Note that θ2(t∗) is the backward orientation during
reversed accelerating driving. To obtain forward direction π is
added/subtracted. The overall solution of the joint trajectory is
obtained by reversing the time of the second part as follows

x(t) =

{
x1(t) 0 ≤ t < t1
x2(t∗2 + t1 − t) t1 ≤ t ≤ t∗2 + t1

(10)

y(t) =

{
y1(t) 0 ≤ t < t1
y2(t∗2 + t1 − t) t1 ≤ t ≤ t∗2 + t1

(11)

B. Minimal time solution

To find optimal solution using constant acceleration and
deceleration curve (CACD) one needs to find valid at1, at2 (ac-
cording to (1), ar1, ar2 are defined) and v̂ which minimize the
travelling time between given start (xsp = ysp = 0, θsp = 0 ,
vsp) and desired goal (xep, yep, θep, vep).

The solution (at1, at2, v̂) needs to satisfy the following
equality constraints

θep − θsp + 2kπ = θ1(t1)− θ∗2(t∗2), k ∈ Z
xep = x1(t1) + x∗2(t∗2) cos θep − y∗2(t∗2) sin θep
yep = y1(t1) + x∗2(t∗2) sin θep + y∗2(t∗2) cos θep

(12)

which is derived from (9) considering x2(t∗2) = x1(t1),
y2(t∗2) = y1(t1), θ1(t1) = θ2(t∗2) + π and k ∈ Z. Maximal
velocity v̂ is defined by the first equation in (12) considering
(3) and (6) as follows

∆θ =
a∗r2
a∗t2

ln
vep
vsp

+

(
ar1
at1
− a∗r2
a∗t2

)
ln

v̂

vsp
(13)

v̂ = vspe

∆θ−
a∗r2
a∗t2

ln
vep
vsp

ar1
at1

−
a∗r2
a∗t2 (14)

where ∆θ = θ1(t1)− θ∗2(t∗2). This reduces the number of free
parameters from 3 to 2 and therefore simplifies the solution
and lowers the computational complexity. To find a solution
we thus need to solve only two equations (the second and
the third line in Eq. (12)) with two free parameters at1, a∗t2
( {at1, a∗t2} ∈ [0, aMAXt] ). Solutions cannot be obtained
analytically. However, the numeric solution is easily found
because only the bounded space of two parameters needs
to be searched on a convex domain as shown in Section
III-E. More feasible solutions may exist and therefore minimal
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time solution t1 + t∗2 is defined as a constrained optimization
problem (equality constraints are defined by (12)), as follows


minimize
at1,at2

(t1 + t∗2)

subject to
xep − x1(t1)− x∗2(t∗2) cos θep + y∗2(t∗2) sin θep = 0

yep − y1(t1)− x∗2(t∗2) sin θep − y∗2(t∗2) cos θep = 0
(15)

where the equality constraints define a valid trajectory solu-
tion. There can be more solutions because for any given at1,
at2, the computed radial acceleration can be either positive or
negative according to (1) and thus one needs to find solutions
for the four possibilities (ar1 > 0, ar2 > 0; ar1 > 0, ar2 < 0;
ar1 < 0, ar2 > 0; ar1 < 0, ar2 < 0) yielding different veloc-
ities v̂ in (14). At the end, the solution resulting in minimal
time (t1 + t∗2) is selected among these four candidates. Note
that at least one of the four possibilities for ar1 and ar2 always
gives a valid trajectory and therefore a minimal time solution
of (15) always exists.

An illustrative example is given in Fig. 1 where the start
is in the origin, vsp = 0.8 ms−1, final pose is xep = 0.35
m, yep = 1 m, θep = −π/4 and vep = 0.5 ms−1. Maximal
accelerations are aMAXt = 2 ms−2 , aMAXr = 4 s−2. Known
initial and final velocities define the minimal radii of curvature
(black circles in Fig. 1). Minimal time solutions represent
three different combinations of radial accelerations while the
solution for the fourth combination (ar1 < 0, ar2 < 0) does
not exist. The optimal solution of 1.42 s is obtained using
at1 = 0.90 ms−2, at2 = −1.14 ms−2, ar1 > 0, and ar2 < 0.
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Fig. 1. Shortest time paths using constant accelerations. Shown: path,
orientation, curvature, and velocity profile for different radial acceleration
combinations. The optimal solution of 1.42 s is obtained using ar1 > 0,
ar2 < 0.

The obtained solution merely solves two equations for two
unknowns and the obtained trajectory has optimal velocity
profile. Advantage of the proposed path planner is that the
optimal velocity profile does not need to be computed. Instead,
it is given implicitly by considered acceleration constraint
(1). The solution does not limit tangential velocity which

simply is computed so that the vehicle can always accelerate
or decelerate. So the vehicle maximal velocity constraints
may be violated. Moreover, as seen from Fig. 1, the obtained
solution has discontinuous curvature in the point where radial
acceleration switches from ar1 to ar2. Modifications of this
basic solution which improve the mentioned disadvantages are
given in the sequel.

C. Modification: velocity constraint

The proposed basic solution can be simply modified by
also considering maximal allowable vehicle velocity vMAX .
In solutions where the computed v̂ exceeds vMAX the driving
velocity v(t) is saturated

vs(t) =

{
v(t) v(t) ≤ vMAX

vMAX v(t) > vMAX
(16)

The vehicle still drives on the same path but it needs more
time if velocity is saturated. The time course of the basic
trajectory needs to be adapted so that the travelled path will be
the same. Whenever v̂ > vMAX the velocity saturation starts
for acceleration part at t1s =

vMAX−vsp
at1

and for deceleration
part (reversed acceleration solution) at t∗2s =

vMAX−vep
a∗t2

. Then
the time course given in (10) and (11) needs to be rescheduled
as follows

tsol =
t 0 ≤ t < t1s
s1(t)
vMAX

+ t1s t1s ≤ t < t1

t∗2 − t∗ + s1(t)
vMAX

+ t1s 0 ≤ t∗ < t∗2s
s2(t∗2)−s2(t∗)

vMAX
+ t∗2 − t∗2s + s1(t)

vMAX
+ t1s t∗2s ≤ t∗ ≤ t∗2

(17)

where s1(t) and s∗2(t∗) (t > t1s, t∗ > t∗2s) are travelled
distances during velocity saturation in acceleration and de-
celeration part defined by

s1(t) =
(t− t1s)(2vsp + at1t1s + at1t)

2

and
s2(t∗) =

(t∗ − t∗2s)(2vep + a∗t2t
∗
2s + a∗t2t

∗)

2

The solution of the example from Fig. 1 after considering
constrained velocity (vMAX = 1 ms−1) is given in Fig. 2. The
optimal solution of 1.56 s is obtained using at1 = 0.90 ms−2,
at2 = −1.14 ms−2, ar1 > 0, and ar2 < 0.

D. Modification: continuous curvature

To make the planned trajectory more appropriate for
wheeled vehicles the curvature of the path needs to be continu-
ous in order to prevent sudden jumps of angular velocity while
driving. This can be achieved if, besides constant acceleration
and deceleration trajectory parts, the trajectory also includes a
middle part where the vehicle drives with constant tangential
velocity vL and accelerates only radially so that the curvature
changes continuously from the final curvature of the accelera-
tion part to the initial curvature of the deceleration part. If in
basic path planning v(t) > vMAX , the middle part constant
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Fig. 2. Shortest time paths using constant accelerations and constrained
velocity. Shown: path, orientation, curvature and velocity profile for different
radial acceleration combinations. All solutions have longer times according
to Fig. 1. The optimal solution of 1.56 s is obtained using ar1 > 0, and
ar2 < 0.

velocity vL can be vL = vMAX , otherwise vL needs to be
selected lower than the reached v̂ of the basic planning (e.g.
vL = 0.9v̂ ).

Let as assume constant rate of change of radial acceleration
during the middle part (the duration of this middle part is ∆t
which will be given later). Then the radial acceleration of the
middle part is defined by

ar3(t3) = ar1 +
ar2 − ar1

∆t
t3 (18)

where t3 ∈ [0,∆t] and angular velocity is ω3(t3) = ar3(t3)
vL

.
The increment of the orientation made in the middle part is

∆θ3 =

∫ ∆t

0

ω3(τ)dτ =
(ar1 + ar2)∆t

2vL
(19)

This increment of orientation ∆θ3 should be included in the
orientation condition (the first line in (12)):

∆θ3 = θep − θsp −
ar1
at1

ln
vL
vsp

+
a∗r2
a∗t2

ln
vL
vep

+ 2kπ, k ∈ Z
(20)

taking into account (3) and (6). Considering relation (19), the
time of the middle part is defined as

∆t =
2vL∆θ3

ar1 + ar2
(21)

The trajectory of the middle part (continuation of the first part)
is then given by

θ3(t3) = θ1(t1) +

∫ t3

0

ω3(τ)dτ = a+ bt3 + ct23 (22)

x3(t3) = x1(t1) + vL

∫ t3

0

cos θ3(τ)dτ (23)

y3(t3) = y1(t1) + vL

∫ t3

0

sin θ3(τ)dτ (24)

where a = θ1(t1), b = ar1
vL

, c = ar2−ar1
2vL∆t , and times of the

acceleration part and the deceleration part are t1 =
vL−vsp
at1

and t∗2 =
vL−vep
a∗t2

, respectively. Solutions of (23) and (24)
are obtained by Fresnel integrals usually defined by C(u) =∫ u

0
cos
(
πτ2

2

)
dτ , S(u) =

∫ u
0

sin
(
πτ2

2

)
dτ . Using variable

substitution u =
√

2c
π (τ + d), (23) and (24) can be expressed

as follows

x3(t3) = x1(t1) + vL

√
π

2c

[(
C
(
u+
)
− C

(
u−
))

cos f−(
S
(
u+
)
− S

(
u−
))

sin f
]

(25)

y3(t3) = y1(t1) + vL

√
π

2c

[(
S
(
u+
)
− S

(
u−
))

cos f+(
C
(
u+
)
− C

(
u−
))

sin f
]

(26)

where u+ =
√

2c
π (t3 + d), u− =

√
2c
π d, d = b

2c , and f =

a− cd2.
The final trajectory solution consists of acceleration part

(Eqs. (3) - (5)), the middle part (Eqs. (22), (25) and (26)) and
deceleration part (Eq. (6) - (8)). The solution {at1, at2} needs
to satisfy the following equality constraints (similarly as in
(12))

xep = x3(∆t) + x∗2(t∗2) cos θep − y∗2(t∗2) sin θep
yep = y3(∆t) + x∗2(t∗2) sin θep + y∗2(t∗2) cos θep

(27)

where θep − θsp + 2kπ = θ1(t1)− θ∗2(t∗2) + ∆θ3. The overall
solution is joint trajectory obtained by joining all parts by
common time (x(tsol), y(tsol), θ(tsol))

tsol =

 t 0 ≤ t < t1
t1 + t3 0 ≤ t3 < ∆t
t∗2 − t∗ + t1 + ∆t 0 ≤ t∗ ≤ t∗2

(28)

Minimal time solution is then defined as follows
minimize
at1,at2

(t1 + t∗2 + ∆t)

subject to
xep − x3(∆t)− x∗2(t∗2) cos θep + y∗2(t∗2) sin θep = 0

yep − y3(∆t)− x∗2(t∗2) sin θep − y∗2(t∗2) cos θep = 0
(29)

The solution of the example from Fig. 1 which considers
maximal driving velocity (vMAX = 1 ms−1) and has con-
tinuous curvature is given in Fig. 3. The optimal solution of
1.53 s is obtained using at1 = 0.74 ms−2, at2 = −1.11 ms−2,
ar1 > 0, and ar2 < 0. The solution results in a bit longer time
than the basic solution (Fig. 1) which is due to the velocity
constraint. It has lower time than the simple constrained
solution (Fig. 2). Due to the middle part, the solution has
continuous curvature and is thus easily drivable by a wheeled
vehicle. Because of zero tangential acceleration in the middle
part the radial acceleration can be higher which allows faster
rotation and thus straighter and shorter curves. Consequently,
shorter driving times can be achieved in comparison with the
simple constrained solution, but the driving time is usually
still longer than in the basic (unsaturated) solution because of
lower velocities.
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Fig. 3. Continuous curvature shortest time paths using constant accelerations
considering constrained velocity. Shown: path, orientation, curvature and
velocity profile for different radial acceleration combinations. The optimal
solution of 1.53 s is obtained using ar1 > 0 and ar2 < 0.

E. Convergence analysis

To answer the question how difficult is to find the solution
by optimization, the convergence properties of the algorithm
are analyzed. This is done by adopting an unconstrained
optimization algorithm (Nelder-Mead simplex direct search
method in our case) where the cost function quantifies the
squared Euclidean distance D of the equality constraints vio-
lation. Equality constraints from (15) are therefore transformed
into cost function:

D = (xep − x1(t1)− x∗2(t∗2) cos θep + y∗2(t∗2) sin θep)
2

+

(yep − y1(t1)− x∗2(t∗2) sin θep − y∗2(t∗2) cos θep)
2 (30)

The proposed CACD solutions will be analysed by showing
the cost function D with respect to the free parameters at1
and at2. The equality constraints from (15) are satisfied when
the cost function (30) becomes zero. There can be several
solutions but we are only interested in finding the one that
corresponds to the minimum driving time.

Fig. 4 shows the cost function D for the example in Fig. 1
with ar1 > 0 and ar2 > 0 (magenta line with travel time 1.9
s in Fig. 1). Only one point (at1 = 1.81 ms−2, at2 = −0.94
ms−2) satisfies the constraints and its optimal travelling time
found using (15) is 1.9 s. Because of convex cost function this
solution is found easily.

Fig. 5 shows the quadratic Euclidean distance of constraints
violation for the example in Fig. 1 with ar1 > 0 and ar2 < 0
(green line in Fig. 1). Here more points satisfy the constraints
and they all present valid trajectories, constraint optimization
thus returns the one with minimal time which is 1.42 s (at
at1 = 0.90 ms−2, at2 = −1.14 ms−2). In Fig. 5 the optimal
solution (fastest trajectory) is marked by a dot. Other valid
trajectories (not with minimal time) belong to lower tangential
accelerations and higher radial accelerations and can therefore
have several encirclement of the start or the end point. Some

Fig. 4. Squared Euclidean distance of equality constraint violation for ar1 >
0 and ar2 > 0 in Fig. 1. Optimal solution of (15) is therefore found at
at1 = 1.81 ms−2, at2 = −0.94 ms−2 with travelling time of 1.9 s.

TABLE I
VALID TRAJECTORY’S PARAMETERS AND THEIR TRAVELLING TIMES

OBTAINED FOR EXAMPLE IN FIG. 1 WITH ar1 > 0 AND ar2 < 0.

time [s] at1 [ms−2] −at2 [ms−2]

1.42 0.905 1.137
4.47 0.235 0.403
7.47 0.137 0.246

10.47 0.097 0.177
13.47 0.075 0.138
16.46 0.062 0.110
19.46 0.053 0.091

...
...

...

of those trajectories given in ascending order of the traveling
time are given in Table I. The shape of the cost function around
all the solutions of the constrained optimization problem (15)
is convex but the size of the basin of attraction varies. The
cost function around the solutions increases more rapidly for
solutions with longer time. The solution with the shortest time
(encircled in Fig. 5) has the largest basin of attraction, and
therefore it is very easy to be found which is beneficial for
the convergence of the proposed algorithm.

IV. EXAMPLES AND COMPARISONS

The obtained CACD trajectory, either the basic one (15) or
the one with continuous curvature (29), is guaranteed to be
time optimal (taking into consideration the given restrictions)
as this follows from the problem definition. The obtained
trajectory gives the feasible path and at the same time its
velocity profile on this path is already time optimal. It is
therefore not possible to drive faster on the obtained path if
the constraints (on accelerations and maximal velocity) are
considered.

A. Comparison with Bernstein-Bézier curve

The remaining question is how close to the global optimum
the obtained path is. In other words: can a trajectory with non-
constant accelerations which would still obey the mentioned
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Fig. 5. Squared Euclidean distance of constraints violation for example ar1 >
0 and ar2 < 0 in Fig. 1. More parameter sets satisfy the constraints (the
distance is zero). Among these, the optimal one found by (15) has the largest
convex area (time is 1.42 s, at1 = 0.90 ms−2, at2 = −1.14 ms−2).

Fig. 6. The first three valid trajectories from Table I for ar1 > 0 and ar2 < 0.
Valid trajectories with longer times have lower tangential accelerations and
higher radial accelerations and therefore have several encirclements of the
start or the end point.

constraints be faster? The answer is yes but obtaining such a
globally optimal solution would require complex optimization
problem and its optimum solution would be quite close to
the proposed one. To lower the complexity one therefore
needs to reduce the input parameter set (the proposed basic
CACD is defined by 2 parameters only). Finding a general
globally optimal solution would however require infinite input
space (arbitrary continuous curve of acceleration) which is
practically impossible to solve.

To illustrate the above statements and evaluate the proposed
CACD planner we compare the proposed solution with the
optimal solution obtained on a trajectory obtained by fifth
order polynomial function described by Bernstein-Bézier (BB)
curve

r(λ) = (1− λ)
5
P0 + 5λ (1− λ)

4
P1 + 10λ2 (1− λ)

3
P2

+10λ3 (1− λ)
2
P3 + 5λ4 (1− λ)P4 + λ5P5

(31)
with six control points Pi = [xi, yi]

T , i ∈ {0, 1, · · · , 5} with λ
being normalized time (0 ≤ λ ≤ 1). BB curve is a parametric

TABLE II
TRAVELLING TIMES COMPARISONS OF THE PROPOSED CACD PLANNER

AND THE VELOCITY-OPTIMIZED 4TH AND 5TH ORDER
BERNSTEIN-BÉZIER CURVE. DIFFERENT TRAJECTORIES ARE COMPUTED

FOR FIXED INITIAL PARAMETERS (xsp = ysp = 0, θsp = 0, vsp = 0.3
MS−1 , xep = yep = 1 M, vep = 0.5 MS−1 , vL = 1.2 MS−1 , aMAXt = 2

MS−2 AND aMAXr = 4 S−2) AND VARYING FINAL ORIENTATION (θep)

θep [◦] tCACD [s] tBB4[s] tBB5[s]

-135 2.020 / /
-90 1.792 / /
-45 1.614 / 1.572
0 1.507 / 1.492
45 1.475 1.465 1.465
90 1.520 1.494 1.489

135 1.646 / 1.565
180 1.857 / /
225 2.147 / /

function where the desired initial and final requirements can be
easily set while its shape can be adjusted by free parameters.
The first two and the last two control points are defined by
the initial and the final conditions as follows: P0 = [xsp, ysp],
P1 = P0 + 0.2vsp [cos(θsp), sin(θsp)]

T , P5 = [xep, yep],
P4 = P5 + 0.2vep [cos(θep + π), sin(θep + π)]

T , and P2 and
P3 are free control points represented by four parameters
which are found by optimization so that the travelling time is
minimal. It has to be stressed that the BB curve only defines
the path while the optimal velocity profile is computed by nu-
meric integration detailed in [19] and [29] where acceleration
constraints (1) are considered. This calculation is performed
in every optimization iteration for the obtained BB path.

The comprehensive comparison between the proposed
CACD planner and the BB based planner was conducted.
Table II shows travelling times for different final poses of
the robot. Three algorithms are included: the CACD planner,
the 4th order BB planner (two free parameters as in the case
of the CACD planner), the 5th order BB planner (four free
parameters). We can see that the velocity-optimized BB curve
solution improves the travelling time approximately for 1 %.
The solution using BB is computationally more intense and
its solution is not a parametric function since it includes
a nonlinear mapping (numeric look-up table) for obtaining
optimal time scheduling (λ(t)). Notice also that a feasible BB
solution cannot be found for cases where higher orientation
increments (∆θ = θep − θsp) are required. This could be
improved by increasing the order of the BB curve which
increases the degree of freedom and thus approaches the global
optimal solution but this also makes the computation time
longer.

Fig. 7 shows the comparison of the trajectories obtained by
the proposed CACD planner (green curves) and the BB based
planner (blue curves). What can be observed immediately is
that the BB path is straighter which means that the initial and
the final curvature is very large while it is small in the middle
part. The final result shows slightly better driving time for the
BB curve.
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Fig. 7. Comparison of the proposed CACD trajectory (green) and velocity-
optimized Bernstein-Bézier curve (blue) for initial parameters (xsp = ysp =
0, θsp = 0, vsp = 0.3 ms−1, xep = yep = 1 m, ,θep = −10◦, vep = 0.5
ms−1, vL = 1.2 ms−1, aMAXt = 2 ms−2 and aMAXr = 4 s−2).

B. Illustration of other possible applications

The proposed CACD motion planner can have several
applications. It can be used as a standalone motion planner
in obstacle free environment as illustrated in Sections III and
IV-C. It can also be used as CACD motion primitive generator
in some other path planners to estimate cost-to-goal heuristics
or to build a lattice graph for environments with obstacles.
It can as well be used to smooth a path defined by a set of
way-points which is obtained from some path planner. Fig.
8 shows an illustration of path smoothing and lattice graph
construction. In the upper graph in Fig. 8 the path consisting
of straight-line sections (going from x = 0 m and y = 0 m to
x = 2 m and y = 0 m, then to x = 0.5 m and y = 2 m, and
so on) is smoothed by inserting CACD motion primitives. The
start and the goal points of the connecting CACD curve lie at a
constant distance from the junction point of the two sequential
straight-line segments. The start and the goal orientations are
defined by straight-line sections.

The lower graph in Fig. 8 illustrates the lattice graph
construction using CACD motion primitives that could be used
to explore the environment in some graph-based planner. In
this example each CACD curve starts from its parent final pose
and ends in the pose with one of the orientation increments
(−45◦, 0◦, 45◦).

0 1 2 3 4
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3

4

-0.5 0 0.5 1

0

0.5

1

1.5

Fig. 8. Illustration of path smoothing application (upper graph) where the
straight-line path with discontinuous orientation in the junctions is smoothed
by inserting the CACD curves (thick green line). Illustration of a lattice graph
construction (lower graph) using CACD motion primitives where each node
(final point of the CACD curve) expands to three new vertices connected by
the CACD curves.

C. Experiments

Performance of the proposed trajectory planners is checked
also by several experiments done on a wheeled mobile robot.
The robot (see Fig. 9) has a cube shape with a 7.5 cm side
and weighs 0.5 kg. Its pose is estimated with an image sensor
and a computer-vision algorithm running at the sampling
frequency of 30 Hz. The robot is controlled by commanding
its translational velocity (v(t)) and its angular velocity (ω(t))
which present the reference for implemented low-level control
in the robot.

Trajectory tracking is achieved by nonlinear control law [30]

v(t) = vref (t) cos eθ(t) + kx(t)ex(t)

ω(t) = ωref (t) + ky(t)vref (t) sin eθ(t)
eθ(t) ey(t) + kθ(t)eθ(t)

where ex(t), ey(t) and eθ(t) are the components of the pose
tracking error expressed in robot local coordinates, vref (t) =√
ẋ2(t) + ẏ2(t)2 and ωref (t) = ẋ(t)ÿ(t)−ẏ(t)ẍ(t)

ẋ2(t)+ẏ2(t) are the refer-
ence velocities computed from the planned trajectory, kx(t) =

kϕ(t) = 2ζ
√
ω2
ref (t) + gv2

ref (t) and ky(t) = gvref (t) are the
controller gains with tuning parameters chosen as ζ = 0.8,
g = 150.
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Fig. 9. Robot used during experiments with the color patch used for vision-
based localization.

The algorithms treated in this comparison are the basic
CACD trajectory planning algorithm with limited maximal
velocity (Section III-C) and the CACD trajectory planning al-
gorithm with continuous curvature transitions (Section III-D).

Both planning approaches result in minimal time path under
given design constraints (maximal velocity and accelerations).
The basic CACD results in an angular velocity with a dis-
continuity (due to discontinuous curvature). This sudden jump
influences the final tracking performance but it can also be
hidden by other prevailing effects such as tracking controller
dynamics, relatively long sampling time (Ts = 33 ms),
measurement system delay (in our case approximately 2Ts
due to localization using image sensor), unmodelled dynamics,
wheel sliding and noise.

Experiments on the real mobile robot are shown Fig.
10. The first two plots show the x, y plot together with
their references, next two plots show the actual velocities
and the commanded velocities while the last plot shows
the position error between planned trajectory (x(t), y(t))
and robot trajectory (xrob(t), yrob(t)) defined as: derr(t) =√

(x(t)− xrob(t))2 + (y(t)− yrob(t))2. In the experiment in
Fig. 10 maximal accelerations are selected so the robot can
still reliably track the trajectory most of the time. The main
purpose of the experiments is to show that both planners can
provide similar reference trajectories with similar traveling
times (tCACD = 3.56 s, tCκ−CACD = 3.63 s) if observing
the paths in Fig. 10. However, due to discontinuity in the
curvature present in the basic CACD planner, the required
angular velocity needs to make sudden change which causes
larger tracking error as seen in Fig. 10. The controller may
need some more time to recover from this error if robot is
driving with accelerations on the edge of slipping. This effect
of discontinuity in curvature becomes noticeable at jump of
the angular velocity in the basic CACD (after 1.6 s).

V. CONCLUSION

In this work, a novel trajectory planning algorithm is
proposed to generate minimal time trajectories for wheeled
mobile robots. The solution is found for given initial and
final configurations considering driving constraints on max-
imal velocity and accelerations. The proposed solutions are
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Fig. 10. Comparison of continuous curvature CACD (Cκ-CACD) and basic
CACD tracking results. Trajectories parameters are: xsp = ysp = 0, θsp = 0,
vsp = 0.1 ms−1, xep = 1.3 m yep = 1.2 m, θep = −10◦, vep = 0.2
ms−1, vL = 0.5 ms−1, aMAXt = 0.5 ms−2, aMAXr = 0.5 s−2.

derived analytically for constant-acceleration and constant-
deceleration motion. In the basic solution the resulting CACD
trajectory is a compact parametric function parametrized by
two parameters only, i.e. maximal acceleration and maximal
deceleration. These parameters are obtained by constrained
optimization which solves two equations for the two unknown
parameters. Minimal time solution is easily found as shown
in the provided convergence analysis.

To achieve feasible trajectories which vehicles can easily
drive on, the basic solution is extended to obtain continuous
transitions of curvature. The basic solution and its modification
with considered maximal driving velocity (Section III-B and
III-C) guarantee optimal trajectory in the sense of traveling
time. The solution given in Section III-D results in a continu-
ous curvature trajectory whose traveling time is in the majority
of cases even shorter than in solution from Section III-C. This
is possible because the inserted path section allows faster robot
rotation and consequently straighter and shorter acceleration
and deceleration parts. Note that the proposed approach does
not only optimize the velocity profile for a given path but
instead adapts trajectory to obtain minimal time. This allows to
compensate for the lost time due to the included modification
by path corrections. The obtained solution is optimal for the
defined function in the middle curve part but there may exist
a better function.

The proposed solutions are evaluated by several path-
planning examples and by a comparison to the planner using
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Bernstein-Bezier curves with applied additional velocity op-
timization. It is shown that CACD planner provides compu-
tationally efficient and time optimal solutions using constant-
acceleration and constant-deceleration motion and considering
the mentioned driving constraints. As such it can be applied
in path smoothing and path planning applications as a stand-
alone planner in unobstructed environments or as a motion
primitive generator in lattice-graph based search planners in
the presence of static or dynamic obstacles.
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